Derivation of the Black-Scholes PDE

As we will see, the derived partial differential equation is independent of the choice of p, H:=1pp and of G:=H+H1.
Let V(S,t) be a smooth function and is defined over 0St< and tT. Using Taylor expansion, and recalling the values of u and l, we can write V+=V(Stu,t+Δt)=V(St+St(u1),t+Δt)=V(St+St(μΔt+σΔtH),t+Δt)
=V(St,t)+VSSt(μΔt+σΔtH)+VtΔt+122VS2S2tσ2H2Δt+O(Δt)3/2
and V=V(Stl,t+Δt)=V(St+St(l1),t+Δt)=V(St+St(μΔtσΔtH),t+Δt)
=V(St,t)+VSSt(μΔtσΔtH)+VtΔt+122VS2S2tσ2H2Δt+O(Δt)3/2
Subtracting V from V+ gives V+V=2VSStσΔtG+122VS2S2tσ2(H2H2)Δt+O(Δt)3/2
Substituting V+, V and (V+V) into Vt, gives Vt(1+rΔt)=(1+rΔt)V+Vul+uVlV+ul+O(Δt)2.
This gives rVt+Vt+rSVS+12S2tσ22VS2=0,
which is called the Black-Scholes partial differential equation. The Black-Scholes PDE can be transformed into the heat equation, which can be solved analytically.


Another derivation of the Black-Scholes partial differential equation
Assume that the security price follows a Geometric Brownian motion with a constant drift μ and a constant variance of σ2. Use Ito's lemma on V(t,S) dV(t,S)=dSVS+dtVt+(dS)2 122VS2
Substitute dS into dV(t,S) and use the Heuristic rules to get dV(t,S)=(μ S dt+σ dBt)VS+dtVt+(σ2 S2 dt)122VS2
Consider the portfolio of Π=V+Θ S
dΠ=dV+Θ dS=dV+Θ(μ S dt+σ dBt)
Π growth with risk-free interest rate such that to dΠ=rΠdt dΠ=(r1) (V+Θ S)=dV+Θ (μ S dt+σ dBt).
This gives (r dt) (V + Θ S)=(μ S dt+ σ dBt)  V S + dt  V t + (σ2 S2 dt) 12 2 V S2+ Θ (μ S dt+ σ dBt).
Simplify to get r dt V  r dt Θ S + (μ S dt+ σ dBt)  V S + dt  V t + (σ2 S2 dt) 12 2 V S2+ Θ (μ S dt+ σ dBt)=0.
Re-arrange the above equation to get r dt V  r dt Θ S + μ S dt  V S + dt  V t + (σ2 S2 dt) 122 V S2+ Θ μ S dt=σ dBt  V SΘ σ dBt.
We then Hedge and choose Θ=VS (short selling) to eliminate the stochastic term such that
Dividing the above equation by dt gives the Black-Scholes PDE.


References
  1. Black F and Scholes M, (1973), The pricing of options and corporate liabilities, Journal of Political Economy 81(3), 637-659.
  2. Cox, J. C., Ross, S. A., and Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of financial Economics, 7(3), 229-263.
  3. Merton R.C., Theory of Rational Option Pricing, The Bell Journal of Economics and Management Science , Vol. 4, No. 1 (Spring, 1973), pp. 141-183
  4. Tang, Q. Mathematical Models in Industry and Finance, Lecture Notes University of Sussex (2008).
  5. Wilmott P, Howison S and Dewunne J, The Mathematics of Financial Derivatives: A Student Introduction, (1995).

No comments:

Post a Comment