Let V(S,t) be a smooth function and is defined over 0≤St<∞ and t≤T. Using Taylor expansion, and recalling the values of u and l, we can write V+=V(Stu,t+Δt)=V(St+St(u−1),t+Δt)=V(St+St(μΔt+σ√ΔtH),t+Δt)
=V(St,t)+∂V∂SSt(μΔt+σ√ΔtH)+∂V∂tΔt+12∂2V∂S2S2tσ2H2Δt+O(Δt)3/2
and V−=V(Stl,t+Δt)=V(St+St(l−1),t+Δt)=V(St+St(μΔt−σ√ΔtH),t+Δt)
=V(St,t)+∂V∂SSt(μΔt−σ√ΔtH)+∂V∂tΔt+12∂2V∂S2S2tσ2H2Δt+O(Δt)3/2
Subtracting V− from V+ gives V+−V−=2∂V∂SStσ√ΔtG+12∂2V∂S2S2tσ2(H2−H−2)Δt+O(Δt)3/2
Substituting V+, V− and (V+−V−) into Vt, gives Vt(1+rΔt)=(1+rΔt)V+−V−u−l+uV−−lV+u−l+O(Δt)2.
This gives −rVt+∂V∂t+rS∂V∂S+12S2tσ2∂2V∂S2=0,
which is called the Black-Scholes partial differential equation. The Black-Scholes PDE can be transformed into the heat equation, which can be solved analytically.
Another derivation of the Black-Scholes partial differential equation
Assume that the security price follows a Geometric Brownian motion with a constant drift μ and a constant variance of σ2. Use Ito's lemma on V(t,S) dV(t,S)=dS∂V∂S+dt∂V∂t+(dS)2 12∂2V∂S2
Substitute dS into dV(t,S) and use the Heuristic rules to get dV(t,S)=(μ S dt+σ dBt)∂V∂S+dt∂V∂t+(σ2 S2 dt)12∂2V∂S2
Consider the portfolio of Π=V+Θ S
dΠ=dV+Θ dS=dV+Θ(μ S dt+σ dBt)
Π growth with risk-free interest rate such that to dΠ=rΠdt dΠ=(r−1) (V+Θ S)=dV+Θ (μ S dt+σ dBt).
This gives (r dt) (V + Θ S)=(μ S dt+ σ dBt) ∂ V∂ S + dt ∂ V∂ t + (σ2 S2 dt) 12 ∂2 V∂ S2+ Θ (μ S dt+ σ dBt).
Simplify to get −r dt V − r dt Θ S + (μ S dt+ σ dBt) ∂ V∂ S + dt ∂ V∂ t + (σ2 S2 dt) 12 ∂2 V∂ S2+ Θ (μ S dt+ σ dBt)=0.
Re-arrange the above equation to get −r dt V − r dt Θ S + μ S dt ∂ V∂ S + dt ∂ V∂ t + (σ2 S2 dt) 12∂2 V∂ S2+ Θ μ S dt=−σ dBt ∂ V∂ S−Θ σ dBt.
We then Hedge and choose Θ=−∂V∂S (short selling) to eliminate the stochastic term such that
Dividing the above equation by dt gives the Black-Scholes PDE.
References
- Black F and Scholes M, (1973),
The pricing of options and corporate liabilities
, Journal of Political Economy 81(3), 637-659.
- Cox, J. C., Ross, S. A., and Rubinstein, M. (1979).
Option pricing: A simplified approach
. Journal of financial Economics, 7(3), 229-263.
- Merton R.C.,
Theory of Rational Option Pricing
, The Bell Journal of Economics and Management Science , Vol. 4, No. 1 (Spring, 1973), pp. 141-183
- Tang, Q.
Mathematical Models in Industry and Finance
, Lecture Notes University of Sussex (2008).
- Wilmott P, Howison S and Dewunne J,
The Mathematics of Financial Derivatives: A Student Introduction
, (1995).
No comments:
Post a Comment