Integrate both sides of the above equation to get g(T,XT)−g(0,X0)=∫T0∂g∂t(t,Xt)dt+∫T0∂g∂x(t,Xt)dXt+12∫T0∂2g∂x2(t,Xt)(dXt)2.
Substitute dXt=b(t,Xt)dt+v(t,Xt)dBt, to get (for simplicity, we denote b:=b(t,Xt) and v:=v(t,Xt) ) g(T,XT)−g(0,X0)=∫T0∂g∂t(t,Xt)dt+∫T0∂g∂x(t,Xt)(bdt+vdBt)+12∫T0∂2g∂x2(t,Xt)(bdt+vdBt)2.
Heuristic Use the heuristic rules to get g(T,XT)−g(0,X0)=∫T0∂g∂t(t,Xt)dt+∫T0∂g∂x(t,Xt)(bdt+vdBt)+12∫T0∂2g∂x2(t,Xt)v2dt,
which can be simplified by separating the stochastic (diffusion) term from the deterministic terms to get g(T,XT)−g(0,X0)=∫T0(∂g∂t+b∂g∂x+12v2∂2g∂x2)dt+∫T0v∂g∂xdBt,
where the stochastic integral ∫T0v∂g∂xdBt
can be presented in a probabilistic form using Ito isometry lemma
The n-dimensional form of an Ito stochastic process with m Brownian motions and n stochastic processes is dXk,t=bk(t,Xt)dt+m∑i=1σk,i(t,Xt)dBi,t
for 1≤k≤n, and bi and σi,k satisfy the bounded conditions ∀ 1≤i≤m where Xt=(X1,tX2,t⋮Xn,t), b(t,Xt)=(b1(t,Xt)b2(t,Xt)⋮bn(t,Xt)), dBt=(dB1,tdB2,t⋮dBm,t),
σ(t,Xt)=(σ1,1(t,Xt)⋯σ1,m(t,Xt)⋮⋱⋮σn,1(t,Xt)⋯σn,m(t,Xt)).
Let g(t,x)∈C2([0,∞]×R), then the Ito process for Yt=g(t,Xt) using the multidimensional Ito's lemma is dYt=∂g∂t(t,Xt)dt+n∑i=1∂g∂xi(t,Xt)dXi,t+12n∑i=1n∑j=1∂2g∂xi∂xj(t,Xt) dXi,tdXj,t,
Exercise
- Find the Ito process for the Asian call option c(t,S,A) that is a function of t, S and A.
- Show that St=S0e(μ−σ22)dt+σ√dtZ is the solution to dSt=μStdt+σStdBt, where Z∼N(0,1). Hint. Apply Ito's lemma to f(S)=ln S.
References
- Kemna A.G.Z and Vorst A.C.F, (1990),
A Pricing Method for Options Based on Average Asset Values
, Journal of Banking and Finance, 14 (1990) P 113-129.
- Oksendal B.,
Stochastic Differential Equations: An Introduction With Applications
, 5th ed. Springer, 2000.
No comments:
Post a Comment